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A
n arti®cial neural network (ANN) model for determining the steady-state behaviour of
an industrial Fluid Catalytic Cracking (FCC) unit is presented in this paper. Industrial
data from a Greek petroleum re®nery were used to develop, train and check the model.

FCC is one of the most important oil re®nery processes. Due to its complexity the modelling of
the FCC poses a great challenge. The proposed model is capable of predicting the volume
percent of conversion based on six input variables. This work is focused on determining the
optimum architecture of the ANN, in order to gain good generalization properties. The results
show that the ANN is able to accurately predict the measured data. The prediction errors in
both training and validation data sets are almost the same, indicating the capabilities of the
model to accurately generalize when presented with unseen data. The neural model developed
is also compared to an existing non-linear statistical model. The comparison shows that the
neural model is superior to the statistical model.

Keywords: ¯uid catalytic cracking; process modelling; neural networks; multi-layer
perceptron.

1. INTRODUCTION

Fluid catalytic cracking (FCC) is an important oil re®nery
process, which converts high molecular weight oils into
lighter hydrocarbon products. Industrial FCC units are
designed to be capable of using a variety of feedstocks,
including straight run distillates, atmospheric and vacuum
residua and vacuum gas oils. They produce a range of
products, which must adapt to seasonal, environmental and
other changing demand patterns. Since FCC units are capable
of converting large quantities of heavy feed into valuable
lighter products, any improvement in design, operation or
control can result in substantial economic bene®ts.

A typical FCC unit is shown in Figure 1. It consists of two
interconnected gas-solid ¯uidized bed reactors. The riser
reactor, where almost all the endothermic cracking reactions
and coke deposition on the catalyst occur, and the
regenerator reactor, where air is used to burn off the coke
accumulated on the catalyst. The heat produced is carried by
the catalyst from the regenerator to the reactor. Thus, in
addition to reactivating the catalyst, the regenerator
provides the heat required by the endothermic cracking
reactions. The region of economically attractive operational
conditions is determined by both the properties of the
feedstocks and catalyst and the desired product distribution
requirements1. In practice, the optimization of the FCC unit
to the desired range of products is usually carried out by trial
and error. The disadvantage of this approach is that the
transition from one state to the other must be gradual and it
is not always successful, because of the complex interac-
tions between the two reactors. As a result, it could lead to
loss of production and consequently affect pro®ts2.

Process modelling can be used to discover the optimal

path for a safe plant movement of one state to another,
which minimizes product loss during the change. A process
model is a functional relationship among variables that
explains the cause and effect relationships between inputs
and outputs. Models can be developed from fundamental
principles, such as the laws of conversion of mass, energy
and momentum, and other chemical engineering principles.
Such models are capable of explaining the underlying
physics of the system and are called phenomenological
models. Many phenomenological models for the FCC
process have appeared in the literature1±6. However, due
to the complexity of the industrial FCC units, it is very
dif®cult to obtain accurate phenomenological models. The
complexity arises from the strong interactions between the
operational variables of the reactor and the regenerator.
Moreover, there is a large degree of uncertainty in the
kinetics of the cracking reactions and catalyst deactivation
by coke deposition in the riser reactor and the coke burning
process in the regenerator4. Even if an accurate phenomen-
ological model is obtained, it may be highly complicated
and require simplifying assumptions for its solution1.

Another method for practical process modelling is the
black box approach, where models are obtained exclusively
from experimental plant data. Such models do not provide a
detailed knowledge of the underlying physics of the
problem, but they do provide a description of the dynamic
relationship between input and output variables. Statistical
models based on regression analysis is an example of such a
black box approach7. However, the most common
approaches rely on linear system identi®cation models.
Unfortunately, the majority of processes found in the
chemical industries are non-linear and in these cases the
performance of the linear models can be inadequate.
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Recently a promising alternative modelling technique,
arti®cial neural networks (ANNs), has found numerous
applications in representing non-linear functional relation-
ships between variables. ANNs are mathematical models,
which try to simulate the brain’s problem solving approach.
Although ANNs are not new in concept, interest in process
modelling has increased signi®cantly in the last decade.
Some reasons for this growing interest are the tremendous
evolution of digital computing, the limitations of traditional
modelling techniques, the suitability for non-linear multi-
variable systems and the low cost of development8. Some
important published applications of ANNs in chemical
engineering are: fault diagnosis in chemical plants9±11,
dynamic modelling of chemical processes12,13, system identi-
®cation and control14,15, sensor data analysis16, chemi-
cal composition analysis17,18, and inferential control19.
Joseph et al.20 performed a comparison between classical
statistical methods and ANNs. They concluded that ANN
models perform better than regression models and show
more tolerance to noise in the data.

McGreavy et al.21 reported an extensive study on the use
of ANNs to model FCC units. They developed four models
to predict the hydraulic parameters of the ¯uid bed. A
separate reaction model was used to predict the product
distribution. The predicted parameters are in good agree-
ment with the measured data. However, the averaged
predicted error in product distribution increased by a factor
between 3 and 21, when the model was used to predict new
unseen data. This behaviour clearly shows the importance of
a proper ANN selection procedure, which guarantees the
high generalization abilities of the model.

In this paper a feed-forward ANN model is developed and
trained on measured data from an industrial FCC unit. The
model is capable of predicting the volume percent of
conversion under steady-state conditions, based on six input
variables. Special attention is given to the steps required to
achieve an optimal performing model with good general-
ization properties. This model can be a useful tool for
catalysts and feedstocks evaluation, optimization of the
operating conditions and also during the design phase of
FCC units. The structure of the paper is as follows: a
description of the modelling approach followed in this study
is given in section 2. Section 3 provides a description of the

data set used for developing the model. Then, in section 4,
the step-by-step procedure for the selection of the optimal
ANN structure is presented. Section 5 presents the simulated
results obtained by the optimal ANN model and provides a
comparison with a regression model. Concluding remarks
are presented in section 6.

2. THE NEURAL NETWORK APPROACH

ANNs basic premise is that the interactions among a large
number of simple computing elements, called nodes or
neurons, can effect complex information processing. There
exist many network architectures22. In this work, a fully
connected, feed-forward network, widely known as multi-
layer perceptron (MLP), is considered (Figure 2). This type
of network is especially suited to modelling highly non-
linear relationships and to accurately generalizing when
presented with unseen data7. The nodes are arranged to form
an input layer, one or more hidden layers and an output
layer, with nodes in each layer connected to all nodes in
neighbouring layers. Typically one hidden layer has been
found to be suf®cient in most applications7. A real valued
number called `connection weight’ or simply `weight’ is
associated with each connection. The role of the weights is
to modify the signal carried from one node to the other and
either enhance or diminish the in¯uence of the speci®c
connection.

Nodes in the input layer are not associated with any
calculations. They act as distribution nodes and transfer the
inputs to the nodes of the ®rst hidden layer. The outputs
from the output layer represent the network’s predicted
outputs. The function of any node in the hidden and output
layer is to receive a number of inputs from the previous
layer, sum the weighted inputs plus the bias, non-linearly
transform the sum via an activation function and ®nally
broadcast the output either to nodes of the next layer or to
the environment. Referring to Figure 2, the output, zl, of the
l th hidden node is given by:
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where wkl is the weight for the connection from the kth input
node to the l th hidden node and vl is the bias. In this case a
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Figure 1. A typical FCC unit.

Figure 2. The basic architecture of a feed-forward neural network with a
single hidden layer.



logistic sigmoid relationship has been used as activation
function.

The steps involved in every effort to build a functioning
ANN model of an industrial process are:

· Data collection. For effective modelling the data must be
information rich over a wide operating range. Since in
chemical plants time to steady state can take several
hours, plant tests must be conducted over several days
continuously.

· Data preprocessing. Raw data obtained from plant tests
cannot be used in identi®cation studies. They have to be
®ltered to remove unmeasured noise and outliers that may
have been caused by some measurement error.

· Model selection. The structure of the network needs to be
speci®ed. The speci®cation includes the number of hidden
layers and the number of nodes in each hidden layer. The
number of nodes in the input and output layers are
determined by the plant inputs and outputs.

· Training and validation. During supervised training, the
network learns by adapting its weights based on the
training data set provided at the input and output layers.
The ANNs used in this study were trained using the EBP
(Error-Back-Propagation) algorithm, which is implemen-
ted in the Stuttgart Neural Network Simulator. This
simulator allows neural networks to be easily designed
and trained and is freely available via the Internet (http://
www.informatik.uni-stuttgart.de/ipvr/bv/ projekte/snns/
snns.html). The weights are determined by iteration to
produce the minimum error in the output, measured, for
example, as the root mean squared error:
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where p represents the examples in the training set, d p
m is the

desired output of mth node on pth example and y p
m is the

predicted output. Parameters such as learning rate and
momentum used in the EBP and other mathematical details
about the EBP algorithm are discussed elsewhere23. For the
purpose of model building, the available data are split into
two different sets: training set and validation set. The ANN
is trained using the training data set. To avoid overtraining8,
the network performance with respect to data of the
validation set is monitored after each training iteration.
Thus, the validation set is used to gauge the generalization
performance of the model. The training is stopped at the
point where the RMS of the validation set starts to increase.
Because the performance of the EBP algorithm depends on
the initial values of weights, several runs with different
initial random weights need to be performed.

In order to achieve an optimal performing network, the
steps of model selection, training and validation need to be
iterated. A different network structure (number of hidden
layers and/or number of hidden nodes) is examined in each
iteration. The network with the minimum validation error is
considered to be the optimum for the process examined.
Details on this procedure are given in section 4.

3. THE DATA SET

The training and validation of the ANN model was based
upon industrial data provided by the Aspropyrgos Re®nery
of Hellenic Petroleum S.A. (Athens). The data sets were

collected once a week for a period of two years. Excluding
the months where a unit shut-down occurred, a total of 92
observations were provided. In selecting data for model
building, however, it is important to ensure that it represents
normal operating states to avoid spurious predictions from
unusual conditions. So, blocks of data corresponding to
process faults were excluded from the study. Also, outliers
that may have been caused by some measurement errors
were removed. A simple outlier detecting method was
followed, where any observation that differs more than two
standard deviations from the mean is removed from the set.
As a result, a set of 50 observations, representative of
various operating conditions and a broad range of the input
variables, was used for the development of the ANN
model. The output of the model consists of the volume
percent of conversion (Y). The input variables include
properties of the feedstock, properties of the catalyst and
operating conditions. The variables of the model and their
ranges are summarized in Table 1. The training of the ANNs
was carried out on a subset of 40 random observations that
included the minimum and maximum values of each
variable. The remaining 10 observations were used for
validation purposes.

In order to be used with the ANNs models, all the data
were normalized into the range 0 to 1. This was carried out
by determining the maximum and minimum values of each
variable and using the following formula:

xnorm

x xmin

xmax xmin

4

A similar formula was used to return the predicted
normalized conversion to its original units.

4. DEVELOPMENT OF THE NEURAL MODEL

In this section the procedure for selecting the optimal
performing ANN model for the FCC unit is presented. The
task is to ®nd the network structure, which gives the
minimum error in the validation data set. Only the case of
one hidden layer is studied. The number of nodes in the
input and output layers is 6 and 1 respectively, equal to the
number of input and output variables. Therefore, the goal is
to ®nd the optimum number of nodes in the hidden layer.
There are several methods about the determination of the
optimum number of hidden nodes. These methods are based
either on heuristic network derivation such as `regulariza-
tion’, `pruning’ and `stopped training’, or statistical
principles such as `hypothesis testing’, `information cri-
teria’ and `cross validation’. Although the determination of
the optimum number of hidden nodes is still under intensive
study, it seems that statistical methods have more bene®ts
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Table 1. ANN model variables and their ranges.

Variable Range

Conversion: Y (vol %) 70.74 to 85.18
Speci®c gravity of feed: SG 0.90 to 0.92
Sulphur content of the feed: S (wt %) 0.22 to 2.08
Catalyst to oil ratio: C/O 4.48 to 6.33
Speci®c area of the catalyst: SA (m2g±1) 114 to 154
Catalyst circulation rate: CCR (tn min±1) 14.18 to 20.36
Temperature at the exit of the riser: T ( 8 C) 514.7 to 518.7

http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html
http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html
http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html


than the heuristic methods24. In this work, a trial and error
procedure based on cross validation was followed. This
method is presented in Figure 3.

First the number of nodes in the hidden layer (l ) is set at
its minimum value (l 1). Then the network is trained as
explained in section 2. The training procedure is repeated
several (Ntr) times with a different set of initial weights each
time. The network with the minimum RMS for the
validation data set RMSmin is optimal for the particular
value of l and the weight set corresponding to this run is
saved. Thereafter, l is incremented and an optimal network
(that is an optimal weight set) for the new value of l is
obtained. The procedure is iterated until l reaches the value
of llim that is the upper limit for the number of hidden units.
Generally, llim depends on the size and the complexity of the
problem. In this work it was set to 10. The optimum number
of hidden nodes corresponds to that value of l, for which the

network attains the least RMSmin . It must be noted that, since
only a ®nite number of training runs can be performed to
explore the error surface, the optimal weight set obtained
may represent a deep local minimum of the error surface
and not its global minimum.

The results of this trial and error method are presented in
Figure 4. Networks with four and ®ve nodes present similar
RMS errors for the validation data set. However, the
network with ®ve nodes gives much better results for the
training set and it is considered to be the best for modelling
the FCC unit. The results of this neural model are presented
in the next section.

5. RESULTS AND DISCUSSION

In this section the results of the optimum neural model,
which was obtained from the procedure presented earlier in
this paper, are discussed and compared to the results of a
non-linear statistical model.

5.1. Results of the ANN Model

In Figure 5 the measured and the predicted values of the
conversion in the FCC unit have been plotted. Training and
validation data are all presented on the same plot. The
observations from 1 to 40 correspond to the training data set,
while those from 41 to 50 are the validation data set. It can
be readily seen that the ANN model performs very well in
predicting both data sets, not only producing trajectories of
the same trend as the process measurements, but being also
very close to the majority of the experimental data points.
This is more obvious in Figure 6, which represents the
scatterplot of measured values of conversion against
predictions. In the same ®gure the best-®t line is also
drawn (dotted line). Model predictions that exactly match
the measured values would fall on the line with an intercept
(a) of 0 and a slope (b) of 1. Almost all points are very close
to this line, where theoretically they should lie.

Table 2 summarizes the main statistical parameters of
the ANN model, that is, the root mean square error (RMS),
the coef®cient of determination (R2) and the values of the
intercept (a) and slope (b) as de®ned above. The last two
parameters are universal model comparison statistics that
are used to quantify useful information on the systematic
error of the model25. These statistics are presented for the
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Figure 3. Flowchart showing the steps involved in creating an optimally
performing ANN model.

Figure 4. Plot showing the dependence of the minimum RMS error for the
validation data set on the number of hidden nodes.

Figure 5. Comparison of measured and predicted values of conversion
using the ANN model.



training, validation and total data set. The predictions for the
training data are better than those for the validation data.
This is expected, since the training data are responsible for
the de®nition of the weights of the neural model according
to the EBP algorithm. Thus, the neural model learns the
characteristics of the training data better than any other data.
The fact that the values of these parameters for the
validation data are similar respectively, proves that the
neural model can generalize suf®ciently well the knowledge
it received from the training data. The ratio of the RMS error
between validation and training data sets is only 1.09, which
can be considered as a signi®cant improvement over
previous efforts to model FCC process21.

5.2. Comparisons with a Statistical Model

The excellence of the neural model is better shown, when
it is compared to a statistical model developed by
Theoharopoulos26. This model is based on a generalized
equation proposed by Wollaston et al.27 and has the
following form:

Y

100 Y

C/O A´CCRF ´SAG´ exp H/RT

SG B 1´ S C D
5

where R = 1.9872 cal mol±1 8 C±1 and A, B, C, D, F, G, H and
I are adjustable parameters. The independent variables of
the above model are the same as those used in the ANN
model and are described in Table 1. The parameters of this
model can be easily determined with the method of non-
linear regression analysis. In this work, the following values
were obtained based on the same data set used to train the
ANN model: A = 0.6650, B = 0.1048, C = 0.1985,
D = 0.0571, F = 1.2513, G = 0.8403, H = 20.6070,
I = 26.7789.

The regression model’s predictions are not that accurate
compared to those of the ANN model. Schematically, this is

shown by the predicted line in Figure 7, which fails to depict
more trends in both the training and validation set than the
ANN model in Figure 5 respectively. This is clearer in
Figure 8, where the predictions of the regression model are
much more scattered than those in Figure 6. In the same
Figure the best-®t line is drawn and the results for
parameters a and b are shown in Table 3. Both parameters
a and b differ more, compared to those of the neural model,
from the ideal values of 0 and 1 respectively. Table 3 also
summarizes the main statistical parameters of the regression
model. All the parameters, compared to those of the ANN
model in Table 2, show the inferiority of the predictions of
the regression model.

In Figure 9 the errors of the two models are compared for
every observation in the training and validation data set.
Although there are single cases, where the error of the
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Figure 6. Scatterplot of measured against predicted values of conversion
using the ANN model.

Table 2. ANN model statistics for the training, validation and total data set.

Training data Validation data Total

RMS 0.65 0.71 0.67
R2 0.93 0.89 0.92
a 6.18 13.13 7.15
b 0.92 0.83 0.91

Figure 7. Comparison of measured and predicted values of conversion
using the non-linear statistical model.

Figure 8. Scatterplot of measured against predicted values of conversion
using the non-linear statistical model.

Table 3. Regression model statistics for the training, validation and total
data set.

Training data Validation data Total

RMS 1.31 1.17 1.28
R

2 0.72 0.69 0.71
a 10.95 6.90 7.96
b 0.86 1.08 0.89



regression model is lower, the superiority of the neural
model in general is again obvious.

Although the neural model predicts better than the
statistical model, the neural model has about 5 times more
adjustable parameters (41) than the statistical model (8). But
this is not the main reason why the neural model has better
performance. It is not accurate to say that parameter
addition will improve the performance of the statistical
model because it may lead to over®tting.

6. CONCLUSIONS

In this paper, a feed forward neural network model for a
¯uid catalytic cracking (FCC) unit was developed. The
model is trained on measured data from an industrial FCC
riser reactor. Special attention was paid to achieving an
optimal performing model with good generalization proper-
ties. The results indicate that accurate predictions can be
made even with a limited training data set. The difference in
predictions on training and validation data is minor,
re¯ecting the abilities of the model to accurately generalize
when presented with unseen data. Comparisons between the
ANN model and a non-linear statistical model clearly show
the superiority of the ANN in terms of prediction accuracy.
Concluding, the highly non-linear behaviour of the FCC
process can be modelled successfully by utilizing the
techniques of arti®cial neural networks.
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Figure 9. Comparison of prediction errors between ANN and statistical
model.
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